Part Number Hot Search : 
2SA854S EL2480 DA726 RC4277AD BD675 SV6625 D1475 2864H
Product Description
Full Text Search
 

To Download TS487-1IQT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TS486 TS487
100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY MODE
s OPERATING FROM Vcc=2V to 5.5V s STANDBY MODE ACTIVE LOW (TS486) or s OUTPUT POWER: 102mW @5V, 38mW
@3.3V into 16 with 0.1% THD+N max (1kHz) s LOW CURRENT CONSUMPTION: 2.5mA max s High Signal-to-Noise ratio: 103dB(A) at 5V s High Crosstalk immunity: 83dB (F=1kHz) s PSRR: 58 dB (F=1kHz), inputs grounded s ON/OFF click reduction circuitry s Unity-Gain Stable s SHORT CIRCUIT LIMITATION s Available in SO8, MiniSO8 & QFN 3x3mm DESCRIPTION The TS486/7 is a dual audio power amplifier capable of driving, in single-ended mode, either a 16 or a 32 stereo headset. Capable of descending to low voltages, it delivers up to 90mW per channel (into 16 loads) of continuous average power with 0.3% THD+N in the audio bandwitdth from a 5V power supply. An externally-controlled standby mode reduces the supply current to 10nA (typ.). The unity gain stable TS486/7 can be configured by external gain-setting resistors or used in a fixed gain version. APPLICATIONS s Headphone Amplifier s Mobile phone, PDA, computer motherboard s High end TV, portable audio player ORDER CODE
Part Number TS486 TS487 TS486 TS486-1 TS486-2 TS486-4 TS487 TS487-1 TS487-2 TS487-4 TS486-IQT, TS486-1IQT, TS486-2IQT, TS486-4IQT: QFN8
PIN CONNECTIONS (top view)
TS486IDT: SO8, TS486IST, TS486-1IST, TS486-2IST, TS486-4IST: MiniSO8
HIGH (TS487)
OU T (1 ) VI N (1) BYPASS
1 2 3 4
8 7 6 5
V CC OU T (2 ) VI N (2) SH U TD OW N
GN D
OUT (1) VIN (1) BYPASS GND
1 2 3 4
8 7 6 5
Vcc OUT (2) VIN (2) SHUTDOWN
TS487IDT: SO8, TS487IST, TS487-1IST, TS487-2IST, TS487-4IST: MiniSO8
O UT (1 )
1
8
V CC
VI N (1 )
2
7
O UT (2 )
BYPASS
3
6
V I N (2 )
Package Temperature
Range: I D * * * tba tba tba * tba tba tba tba tba tba tba tba tba tba tba S Q
G ND
4
5
S HU TDO WN
Gain
Marking
-40, +85C
external TS486I external TS487I external K86A x1/0dB K86B x2/6dB K86C x4/12dB K86D external K87A x1/0dB K87B x2/6dB K87C x4/12dB K87D
TS487-IQT, TS487-1IQT, TS487-2IQT, TS487-4IQT: QFN8
OUT (1) VIN (1) BYPASS GND
1 2 3 4
8 7 6 5
Vcc OUT ( 2) VIN (2) SHUTDOWN
MiniSO & QFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT)
November 2002
1/31
TS486-TS487
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vi Tstg Tj R thja Supply voltage 1) Input Voltage Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient SO8 MiniSO8 QFN8 Power Dissipation 2) SO8 MiniSO8 QFN8 Parameter Value 6 -0.3v to V CC +0.3v -65 to +150 150 175 215 70 0.71 0.58 1.79 1.5 100 200 250 continous 4) Unit V V C C C/W
Pd
W
Human Body Model (pin to pin): TS486, TS4873) ESD Machine Model - 220pF - 240pF (pin to pin) Latch-up Latch-up Immunity (All pins) Lead Temperature (soldering, 10sec) ESD Output Short-Circuit to Vcc or GND
1. All voltage values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25C, Tjunction = 150C.
kV V mA C
3. TS487 stands 1.5KV on all pins except standby pin which stands 1KV. 4. Attention must be paid to continous power dissipation (VDD x 300mA). Exposure of the IC to a short circuit for an extended time period is dramatically reducing product life expectancy.
OPERATING CONDITIONS
Symbol VCC RL Toper CL Supply Voltage Load Resistor Operating Free Air Temperature Range Load Capacitor R L = 16 to 100 R L > 100 Standby Voltage Input TS486 ACTIVE / TS487 in STANDBY TS486 in STANDBY / TS487 ACTIVE Thermal Resistance Junction to Ambient SO8 miniSO8 QFN82) Parameter Value 2 to 5.5 16 -40 to + 85 400 100 1.5 VSTB VCC GND V STB 0.4 1) 150 190 41 Unit V C pF
VSTB
V
RTHJA
1.
C/W
The minimum current consumption (ISTANDBY) is guaranteed at GND (TS486) or V CC (TS487) for the whole temperature range.
2.
When mounted on a 4-layer PCB.
2/31
TS486-TS487
FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS VCC from +5V to +2V, GND = 0V, Tamb = 25C (unless otherwise specified)
Symbol RIN 1,2 Input Resistance 1) Gain value for Gain TS486/TS487-1 G
1.
Parameter
Min.
Typ. 20 0dB 6dB 12dB
Max.
Unit k
Gain value for Gain TS486/TS487-2 Gain value for Gain TS486/TS487-4
dB
See figure 30 to establish the value of Cin vs. -3dB cut off frequency.
APPLICATION COMPONENTS INFORMATION
Components RIN1,2 CIN1,2 RFEED1,2 CS CB C OUT1,2 Functiona l Description Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also forms a high pass filter with CIN (fc = 1 / (2 x Pi x R IN x CIN)) . Not needed in fixed gain versions. Input coupling capacitor which blocks the DC voltage at the amplifier's input terminal. Feedback resistor which sets the closed loop gain in conjunction with RIN. AV= Closed Loop Gain= -RFEED/RIN. Not needed in fixed gain versions. Supply Bypass capacitor which provides power supply filtering. Bypass capacitor which provides half supply filtering. Output coupling capacitor which blocks the DC voltage at the load input terminal. This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x COUT )).
TYPICAL APPLICATION SCHEMATICS
Stdb y level threshold=0.9V Stdby ctrl Right In Cin1 Rfeed1 20k 20k 2 5 3 Stdby BIAS Vcc
+
330 nF Rin1 Cb
1
+ TS486=Stdby TS487=Stdby + 7 Cout1 Cout2 1k ZL=32Ohms
+
330 nF 1F Rin2 20k 6
+
Left In Cin2
GND 4 20k Rfeed2 220F 1k
Stdby level threshold=0.9V Stdby ctrl Fixed Gain Version Right In Cin1 2 8 VCC Stdby + BIAS TS486=Stdby TS487=Stdby 7 220F 1
+
+
330 nF Cb
5 3
+
Cin2 1F 6
+
Left In 330 nF
GND 4
220F
+
+
+
+
8 VCC -
220F
+
Cs
1F ZL=32Ohms
+
+
+
Vcc
Cs
1F ZL=32Ohms
+
Cout1 Cout2 1k
+
1k
ZL=32Oh ms
3/31
TS486-TS487
ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25C (unless otherwise specified)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, No input signal, VSTANDBY=GND for TS486, R L=32 VSTANDBY=Vcc for TS487, RL=32 Min. Typ. 1.8 10 1 90 = 32 32 = 16 16 200 Max. 2.5 1000 Unit mA
ISTANDBY VIO IIB
nA mV nA
Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 1) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL 1% Max, F = 1kHz, R L = 0.1% Max, F = 1kHz, RL 1% Max, F = 1kHz, R L =
PO
60 95
64 65 102 108
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) R L = 32, Pout = 60mW, 20Hz F 20kHz R L = 16, Pout = 90mW, 20Hz F 20kHz Power Supply Rejection Ratio, inputs grounded 2) (Av=-1), RL>=16, CB=1F, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : R L = 32 VOL : RL = 16 VOH : R L = 16 Signal-to-Noise Ratio (A weighted, Av=-1) 2) (RL = 32, THD +N < 0.4%, 20Hz F 20kHz) Channel Separation, R L = 32, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, R L = 16, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 53 106
0.3 0.3 58 115
%
PSRR IO
dB mA
VO
4.45 4.2 80
0.45 4.52 0.6 4.35 103
0.5 V 0.7
SNR
dB
Crosstalk
83 79 80 72 1 1.1 0.4
dB
CI GBP SR
pF MHz V/s
1. Only for external gain version. 2. Guaranteed by design and evaluation.
4/31
TS486-TS487
ELECTRICAL CHARACTERISTICS VCC = +3.3V, GND = 0V, Tamb = 25C (unless otherwise specified) 1)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, No input signal, VSTANDBY=GND for TS486, R L=32 VSTANDBY=Vcc for TS487, RL=32 Min. Typ. 1.8 10 1 90 = 32 32 = 16 16 200 Max. 2.5 1000 Unit mA
ISTANDBY VIO IIB
nA mV nA
Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL 1% Max, F = 1kHz, R L = 0.1% Max, F = 1kHz, RL 1% Max, F = 1kHz, R L =
PO
23 36
26 28 38 42
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) R L = 32, Pout = 16mW, 20Hz F 20kHz R L = 16, Pout = 35mW, 20Hz F 20kHz Power Supply Rejection Ratio, inputs grounded 3) (Av=-1), RL>=16, CB=1F, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : R L = 32 VOL : RL = 16 VOH : R L = 16 Signal-to-Noise Ratio (A weighted, Av=-1) 3) (RL = 32, THD +N < 0.4%, 20Hz F 20kHz) Channel Separation, R L = 32, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, R L = 16, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 53 64
0.3 0.3 58 75
%
PSRR IO
dB mA
VO
2.85 2.68 80
0.3 3 0.45 2.85 98
0.38 V 0.52
SNR
dB
Crosstalk
80 76 77 69 1 1.1 0.4
dB
CI GBP SR
1.
pF MHz V/s
All electrical values are guaranted with correlation measurements at 2V and 5V.
2. 3.
Only for external gain version. Guaranteed by design and evaluation.
5/31
TS486-TS487
ELECTRICAL CHARACTERISTICS VCC = +2.5V, GND = 0V, Tamb = 25C (unless otherwise specified)1)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS486, R L=32 No input signal, VSTANDBY=Vcc for TS487, RL=32 Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL 1% Max, F = 1kHz, R L = 0.1% Max, F = 1kHz, RL 1% Max, F = 1kHz, R L = = 32 32 = 16 16 Min. Typ. 1.7 10 1 90 200 Max. 2.5 1000 Unit mA
ISTANDBY VIO IIB
nA mV nA
PO
12.5 17.5
13 14 21 22
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) R L = 32, Pout = 10mW, 20Hz F 20kHz R L = 16, Pout = 16mW, 20Hz F 20kHz Power Supply Rejection Ratio, inputs grounded 3) (Av=-1), RL>=16, CB=1F, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : R L = 32 VOL : RL = 16 VOH : R L = 16 Signal-to-Noise Ratio (A weighted, Av=-1) 3) (RL = 32, THD +N < 0.4%, 20Hz F 20kHz) Channel Separation, R L = 32, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, R L = 16, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 53 45
0.3 0.3 58 56
%
PSRR IO
dB mA
VO
2.14 1.97 80
0.25 2.25 0.35 2.15 95
0.32 V 0.45
SNR
dB
Crosstalk
80 76 77 69 1 1.1 0.4
dB
CI GBP SR
1.
pF MHz V/s
All electrical values are guaranted with correlation measurements at 2V and 5V.
2. 3.
Only for external gain version. Guaranteed by design and evaluation.
6/31
TS486-TS487
ELECTRICAL CHARACTERISTICS VCC = +2V, GND = 0V, Tamb = 25C (unless otherwise specified)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS486, R L=32 No input signal, VSTANDBY=Vcc for TS487, RL=32 Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 1) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL 1% Max, F = 1kHz, R L = 0.3% Max, F = 1kHz, RL 1% Max, F = 1kHz, R L = = 32 32 = 16 16 Min. Typ. 1.7 10 1 90 200 Max. 2.5 1000 Unit mA
ISTANDBY VIO IIB
nA mV nA
PO
7 9.5
8 9 12 13
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) R L = 32, Pout = 6.5mW, 20Hz F 20kHz R L = 16, Pout = 8mW, 20Hz F 20kHz Power Supply Rejection Ratio, inputs grounded 2) (Av=-1), RL>=16, CB=1F, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : R L = 32 VOL : RL = 16 VOH : R L = 16 Signal-to-Noise Ratio (A weighted, Av=-1) 2) (RL = 32, THD +N < 0.4%, 20Hz F 20kHz) Channel Separation, R L = 32, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, R L = 16, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 52 33
0.3 0.3 57 41
%
PSRR IO
dB mA
VO
1.67 1.53 80
0.24 1.73 0.33 1.63 93
0.29 V 0.41
SNR
dB
Crosstalk
80 76 77 69 1 1.1 0.4
dB
CI GBP SR
pF MHz V/s
1. Only for external gain version. 2. Guaranteed by design and evaluation.
7/31
TS486-TS487
Index of Graphs
Description Common Curves Open Loop Gain and Phase vs Frequency Current Consumption vs Power Supply Voltage Current Consumption vs Standby Voltage Output Power vs Power Supply Voltage Output Power vs Load Resistor Power Dissipation vs Output Power Power Derating vs Ambiant Temperature Output Voltage Swing vs Supply Voltage Low Frequency Cut Off vs Input Capacitor for fixed gain versions Curves With 0dB Gain Setting (Av=-1) THD + N vs Output Power THD + N vs Frequency Crosstalk vs Frequency Signal to Noise Ratio vs Power Supply Voltage PSRR vs Frequency Curves With 6dB Gain Setting (Av=-2) THD + N vs Output Power THD + N vs Frequency Crosstalk vs Frequency Signal to Noise Ratio vs Power Supply Voltage PSRR vs Frequency Curves With 12dB Gain Setting (Av=-4) THD + N vs Output Power THD + N vs Frequency Crosstalk vs Frequency Signal to Noise Ratio vs Power Supply Voltage PSRR vs Frequency 80 to 88 89 to 91 92 to 95 96 to 97 98 to 102 22 to 24 24 24 25 26 57 to 65 66 to 68 69 to 72 73 to 74 75 to 79 19 to 20 20 21 21 22 31 to 39 40 to 42 43 to 48 49 to 50 51 to 56 14 to 15 15 16 17 17 to 18 1 to 10 11 12 to 17 18 to19 20 to 23 24 to 27 28 29 30 9 to 10 10 10 to 11 11 to 12 12 12 to 13 13 13 13 Figure Page
8/31
TS486-TS487
Fig. 1: Open Loop Gain and Phase vs Frequency
180 80 Gain 60 Gain (dB) 40 Phase 20 0 -20 -40 0.1 Vcc = 5V ZL = 16 Tamb = 25C 160 140 120 Phase (Deg) 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 -40 0.1 1 10 100 Frequency (kHz) 1000 Gain (dB) 40 Phase 20 0 -20 80 Gain 60 Vcc = 5V ZL = 16+400pF Tamb = 25C
Fig. 2: Open Loop Gain and Phase vs Frequency
180 160 140 120 100 80 60 40 20 0 -20 10000 Phase (Deg)
Fig. 3: Open Loop Gain and Phase vs Frequency
180 80 Gain 60 Gain (dB) 40 Phase 20 0 -20 -40 0.1 Vcc = 2V ZL = 16 Tamb = 25C 160 140 120 Phase (Deg) 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
Fig. 4: Open Loop Gain and Phase vs Frequency
180 80 Gain 60 Gain (dB) 40 Phase 20 0 -20 -40 0.1 Vcc = 2V ZL = 16+400pF Tamb = 25C 160 140 120 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 Phase (Deg)
Fig. 5: Open Loop Gain and Phase vs Frequency
180 80 Gain 60 Gain (dB) 40 20 0 -20 -40 0.1 Phase Vcc = 5V ZL = 32 Tamb = 25C 160 140 120 Phase (Deg) 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
Fig. 6: Open Loop Gain and Phase vs Frequency
180 80 Gain 60 Gain (dB) 40 20 0 -20 -40 0.1 Phase Vcc = 5V ZL = 32+400pF Tamb = 25C 160 140 120 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 Phase (Deg)
9/31
TS486-TS487
Fig. 7: Open Loop Gain and Phase vs Frequency
180 80 Gain 60 Gain (dB) 40 20 0 -20 -40 0.1 Phase Vcc = 2V ZL = 32 Tamb = 25C 160 140 120 Phase (Deg) 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 -40 0.1 1 10 100 Frequency (kHz) 1000 Gain (dB) 40 20 0 -20 Phase 80 Gain 60 Vcc = 2V ZL = 32+400pF Tamb = 25C
Fig. 8: Open Loop Gain and Phase vs Frequency
180 160 140 120 100 80 60 40 20 0 -20 10000 Phase (Deg) Phase (Deg)
Fig. 9: Open Loop Gain and Phase vs Frequency
180 80 60 Gain (dB) 40 20 0 -20 -40 0.1 Phase Gain Vcc = 5V RL = 600 Tamb = 25C 160 140 120 Phase (Deg) 100 80 60 40 20 0 -20 1 10 100 1000 Frequency (kHz) 10000
Fig. 10: Open Loop Gain and Phase vs Frequency
180 80 60 Gain (dB) 40 20 0 -20 -40 0.1 Phase Gain Vcc = 2V RL = 600 Tamb = 25C 160 140 120 100 80 60 40 20 0 -20 1 10 100 Frequency (kHz) 1000 10000
Fig. 11: Current Consumption vs Power Supply Voltage
2.0 No load Current Consumption (mA)
Fig. 12: Current Consumption vs Standby Voltage
2.0
1.5
Current Consumption (mA)
Ta=85C
1.5 Ta=85C Ta=25C 1.0 Ta=-40C 0.5 TS486 Vcc = 5V No load 0.0 0 1 2 3 4 5
Ta=25C 1.0
Ta=-40C
0.5
0.0 0 1 2 3 4 5 Power Supply Voltage (V)
Standby Voltage (V)
10/31
TS486-TS487
Fig. 13: Current Consumption vs Standby Voltage
2.0
Fig. 14: Current Consumption vs Standby Voltage
2.0 Ta=85C
Current Consumption (mA)
1.5 Ta=85C Ta=25C 1.0 Ta=-40C 0.5 TS486 Vcc = 3.3V No load 0.0 0 1 2 Standby Voltage (V) 3
Current Consumption (mA)
1.5 Ta=25C 1.0
0.5
Ta=-40C TS486 Vcc = 2V No load
0.0 0 1 Standby Voltage (V) 2
Fig. 15: Current Consumption vs Standby Voltage
2.5 Ta=85C Current Consumption (mA) 2.0 Ta=25C
Fig. 16: Current Consumption vs Standby Voltage
2.0 Ta=25C Current Consumption (mA) 1.5 Ta=85C Ta=-40C 1.0
1.5
1.0
Ta=-40C
0.5 TS487 Vcc = 3.3V No load 0.0 0 1 2 Standby Voltage (V) 3
0.5
TS487 Vcc = 5V No load 0 1 2 3 4 5
0.0 Standby Voltage (V)
Fig. 17: Current Consumption vs Standby Voltage
2.0 Ta=85C Current Consumption (mA)
Fig. 18: Output Power vs Power Supply Voltage
200 RL = 16 175 F = 1kHz BW < 125kHz 150 Tamb = 25C Output power (mW) 125 100 75 50 THD+N=0.1% 25
THD+N=1%
1.5 Ta=25C 1.0
THD+N=10%
0.5
Ta=-40C TS487 Vcc = 2V No load
0.0 0 1 Standby Voltage (V) 2
0 2.0
2.5
3.0
3.5 4.0 Vcc (V)
4.5
5.0
5.5
11/31
TS486-TS487
Fig. 19: Output Power vs Power Supply Voltage Fig. 20: Output Power vs Load Resistor
200 RL = 32 F = 1kHz 100 BW < 125kHz Tamb = 25C Output power (mW) 75 THD+N=10% 180 THD+N=1% Output power (mW) 160 140 120 100 80 60 40 20 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 0 8 16 24 32 40 48 Load Resistance (W) 56 64 THD+N=0.1% THD+N=10% THD+N=1% Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25C
50
25
THD+N=0.1%
Fig. 21: Output Power vs Load Resistor
Fig. 22: Output Power vs Load Resistor
50
70 60 Output power (mW) 50 40 THD+N=1%
Output power (mW)
Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25C
45 40 35 30 25 20 15 10 5 THD+N=0.1% 8 16 24 32 40 48 Load Resistance (W) THD+N=1%
Vcc = 2.5V F = 1kHz BW < 125kHz Tamb = 25C
THD+N=10% 30 20 THD+N=0.1% 10 0 8 16 24 32 40 48 Load Resistance (W) 56 64
THD+N=10%
0
56
64
Fig. 23: Output Power vs Load Resistor
25 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25C
Fig. 24: Power Dissipation vs Output Power
20 Output power (mW) THD+N=1% 15
Power Dissipation (mW)
Vcc=5V 80 F=1kHz THD+N<1% 60 RL=16
THD+N=10% 10
40
20
RL=32
5 THD+N=0.1% 0 8 16 24 32 40 48 Load Resistance (W) 56 64 0 0 20 40 60 80 100 Output Power (mW)
12/31
TS486-TS487
Fig. 25: Power Dissipation vs Output Power
40 Vcc=3.3V F=1kHz THD+N<1% 30 RL=16 20 20
Fig. 26: Power Dissipation vs Output Power
Power Dissipation (mW)
Power Dissipation (mW)
Vcc=2.5V F=1kHz THD+N<1% RL=16
10 RL=32
10
RL=32
0
0 0 10 20 Output Power (mW) 30 40
0
5
10
15
20
Output Power (mW)
Fig. 27: Power Dissipation vs Output Power
Fig. 28: Power Derating vs Ambiant Temperature
15 Power Dissipation (mW) Vcc=2V F=1kHz THD+N<1%
(W)
2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 MiniSO8 0 25 50 75 100 Ambia nt Te mpe rature ( C) 125 150 S O8 QFN8
10 RL=16
5 RL=32 0 0 2 4 6 8 10 12 Output Power (mW)
Power Dissipation
0.0
Fig. 29: Output Voltage Swing vs Power Supply Voltage
5.0 4.5 4.0 VOH & VOL (V) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 RL=16 RL=32 Tamb=25C
Fig. 30: Low Frequency Cut Off vs Input Capacitor for fixed gain versions.
100
(Hz)
RinMIN=16k RinTYP =20k 10
-3dB Cut Off Frequency
RinMAX=24k
1 0.1
1 Inp u t Ca p a c ito r Cin (m F)
13/31
TS486-TS487
Fig. 31: THD + N vs Output Power
10 RL = 16 F = 20Hz Av = -1 1 Cb = 1F BW < 22kHz Tamb = 25C
Fig. 32: THD + N vs Output Power
10 RL = 32 F = 20Hz Av = -1 1 Cb = 1F BW < 22kHz Tamb = 25C 0.1
Vcc=2V Vcc=2.5V
THD + N (%)
Vcc=2V
0.1
Vcc=2.5V
THD + N (%)
Vcc=5V
0.01 0.01 1
Vcc=3.3V Vcc=3.3V Vcc=5V
10 Output Power (mW)
100
1
10 Output Power (mW)
100
Fig. 33: THD + N vs Output Power
10 RL = 600, F = 20Hz Av = -1, Cb = 1F BW < 22kHz Tamb = 25C
Vcc=2V Vcc=2.5V Vcc=3.3V
Fig. 34: THD + N vs Output Power
10 RL = 16 F = 1kHz Av = -1 1 Cb = 1F BW < 125kHz Tamb = 25C
1 THD + N (%)
THD + N (%)
Vcc=2V
0.1
Vcc=5V
0.1
Vcc=2.5V
0.01 0.01 1E-3 0.01 0.1 Output Voltage (Vrms) 1 1
Vcc=3.3V
Vcc=5V
10 Output Power (mW)
100
Fig. 35: THD + N vs Output Power
10 RL = 32 F = 1kHz Av = -1 1 Cb = 1F BW < 125kHz Tamb = 25C 0.1
Vcc=2V
Fig. 36: THD + N vs Output Power
10
Vcc=2V
1
Vcc=2.5V
THD + N (%)
THD + N (%)
Vcc=3.3V
0.1
Vcc=5V
0.01
Vcc=2.5V
0.01 RL = 600, F = 1kHz Av = -1, Cb = 1F BW < 125kHz, Tamb = 25C 100 1E-3 0.01 0.1 Output Voltage (Vrms) 1
Vcc=3.3V
Vcc=5V
1E-3 1 10 Output Power (mW)
14/31
TS486-TS487
Fig. 37: THD + N vs Output Power
10 RL = 16 F = 20kHz Av = -1 Cb = 1F BW < 125kHz 1 Tamb = 25C
Fig. 38: THD + N vs Output Power
10 RL = 32 F = 20kHz Av = -1 Cb = 1F BW < 125kHz 1 Tamb = 25C
Vcc=2V Vcc=2.5V
THD + N (%)
Vcc=2V
Vcc=2.5V
0.1
Vcc=3.3V Vcc=5V
THD + N (%)
0.1
Vcc=3.3V Vcc=5V
1
10 Output Power (mW)
100
1
10 Output Power (mW)
100
Fig. 39: THD + N vs Output Power
10
Vcc=2V
Fig. 40: THD + N vs Frequency
1
Vcc=2.5V
RL=16 Av=-1 Cb = 1F Bw < 125kHz Tamb = 25C THD + N (%) 0.1
THD + N (%)
Vcc=2V, Po=7.5mW
0.1
Vcc=5V, Po=85mW
0.01 RL = 600, F = 20kHz Av = -1, Cb = 1F BW < 125kHz, Tamb = 25C 1E-3 0.01
Vcc=3.3V Vcc=5V
0.01 1 20 100 1000 Frequency (Hz) 10000 20k
0.1 Output Voltage (Vrms)
Fig. 41: THD + N vs Frequency
Fig. 42: THD + N vs Frequency
THD + N (%)
THD + N (%)
RL=32 Av=-1 Cb = 1F Bw < 125kHz 0.1 Tamb=25C
RL=600 Av=-1 Cb = 1F 0.1 Bw < 125kHz Tamb = 25C
Vcc=5V, Vo=1.3Vrms Vcc=2V, Vo=0.5Vrms
Vcc=2V, Po=6mW Vcc=5V, Po=55mW
0.01
0.01 1E-3 20
20
100
1000 Frequency (Hz)
10000 20k
100
1000 Frequency (Hz)
10000 20k
15/31
TS486-TS487
Fig. 43: Crosstalk vs Frequency Fig. 44: Crosstalk vs Frequency
80
80
ChB to ChA
Crosstalk (dB)
ChB to ChA 40 RL=16 Vcc=5V Pout=85mW Av=-1 Cb = 1F Bw < 125kHz Tamb=25C 100 1000 Frequency (Hz) 10000 20k
Crosstalk (dB)
60
ChA to ChB
60
ChA to ChB
40
20
20
RL=16 Vcc=2V Pout=7.5mW Av=-1 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
0 20
0
Fig. 45: Crosstalk vs Frequency
Fig. 46: Crosstalk vs Frequency
80 ChA to ChB Crosstalk (dB) Crosstalk (dB) 60 ChB to ChA
80
60
ChA to ChB ChB to ChA
40
20
RL=32 Vcc=5V Pout=55mW Av=-1 Cb = 1F Bw < 125kHz Tamb=25C 100 1000 Frequency (Hz) 10000 20k
40
20
RL=32 Vcc=2V Pout=6mW Av=-1 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
0 20
0
Fig. 47: Crosstalk vs Frequency
Fig. 48: Crosstalk vs Frequency
80
80 Cb = 1F
Crosstalk (dB)
Cb = 4.7F 40
20
RL=16 Vcc=5V Pout=85mW Av=-1 ChB to ChA Bw < 125kHz Tamb=25C 10000 20k
Crosstalk (dB)
60
Cb = 1F
60
Cb = 4.7F RL=32 Vcc=5V Pout=55mW Av=-1 ChB to ChA Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
40
20
0 20
0 100 1000 Frequency (Hz)
16/31
TS486-TS487
Fig. 49: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) Fig. 50: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
Signal to Noise Ratio (dB)
98 96 RL=32 94 92 90 2.0 RL=16 2.5 3.0 3.5 4.0 4.5 5.0
Signal to Noise Ratio (dB)
104 Av = -1 Cb = 1F 102 THD+N < 0.4% Tamb = 25C 100
RL=600
104 Av = -1 Cb = 1F 102 THD+N < 0.4% Tamb = 25C 100 98
RL=600
RL=32 96 94 92 90 2.0 RL=16
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply Voltage (V)
Power Supply Voltage (V)
Fig. 51: PSRR vs Power Supply Voltage
Fig. 52: PSRR vs Bypass Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 -80 100 1000 10000 Frequency (Hz) 100000 Vcc = 5V, 3.3V & 2.5V Vripple = 200mVpp Av = -1 Input = grounded Cb = 1F RL >= 16 Tamb = 25C Vcc = 2V
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 Cb = 4.7F -80 100 1000 10000 Frequency (Hz) 100000 Cb = 2.2F Cb = 1F Vripple = 200mVpp Av = -1 Input = grounded Vcc = 5V RL >= 16 Tamb = 25C
Fig. 53: PSRR vs Input Capacitor
Fig. 54: PSRR vs Output Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 -60 Cin = 100nF -70 100 1000 10000 Frequency (Hz) 100000 Cin = 1F, 220nF Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1F, Rin = 20k RL >= 16 Tamb = 25C
0 -10 -20 Cout = 470F PSRR (dB) -30 -40 -50 -60 -70 -80 100 1000 10000 Frequency (Hz) 100000 Cout = 220F Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1F, RL = 16 RL >= 16 Tamb = 25C
17/31
TS486-TS487
Fig. 55: PSRR vs Output Capacitor Fig. 56: PSRR vs Power Supply Voltage
0 Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1F, RL = 32 RL >= 16 Tamb = 25C -10 -20 PSRR (dB) -30 -40 -50 -60 -70 -80 100 1000 10000 Frequency (Hz) 100000 100 1000 10000 Frequency (Hz) 100000 Vcc = 5V, 3.3V & 2.5V Vripple = 200mVpp Av = -1 Input = floating Cb = 1F RL >= 16 Tamb = 25C Vcc = 2V
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 -80 Cout = 100F Cout = 470F
18/31
TS486-TS487
Fig. 57: THD + N vs Output Power
10 RL = 16 F = 20Hz Av = -2 1 Cb = 1F BW < 22kHz Tamb = 25C
Fig. 58: THD + N vs Output Power
10 RL = 32 F = 20Hz Av = -2 1 Cb = 1F BW < 22kHz Tamb = 25C
Vcc=2V
THD + N (%)
Vcc=2V
0.1
THD + N (%)
Vcc=2.5V
0.1
Vcc=2.5V
0.01 1
Vcc=3.3V
Vcc=5V
0.01 100 1
Vcc=3.3V
Vcc=5V
10 Output Power (mW)
10 Output Power (mW)
100
Fig. 59: THD + N vs Output Power
10 RL = 600, F = 20Hz Av = -2, Cb = 1F BW < 22kHz Tamb = 25C
Vcc=2V Vcc=2.5V Vcc=3.3V
Fig. 60: THD + N vs Output Power
10 RL = 16 F = 1kHz Av = -2 1 Cb = 1F BW < 125kHz Tamb = 25C
1 THD + N (%)
THD + N (%)
Vcc=2V
0.1
Vcc=5V
0.1
Vcc=2.5V
0.01 0.01 1E-3 0.01 0.1 Output Voltage (Vrms) 1 1
Vcc=3.3V
Vcc=5V
10 Output Power (mW)
100
Fig. 61: THD + N vs Output Power
10 RL = 32 F = 1kHz Av = -2 1 Cb = 1F BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.5V
Fig. 62: THD + N vs Output Power
10
Vcc=2V
1
Vcc=2.5V
THD + N (%)
THD + N (%)
Vcc=3.3V
0.1
Vcc=5V
0.1
0.01 RL = 600, F = 1kHz Av = -2, Cb = 1F BW < 125kHz, Tamb = 25C 100 1E-3 0.01 0.1 Output Voltage (Vrms) 1
0.01 1
Vcc=3.3V
Vcc=5V
10 Output Power (mW)
19/31
TS486-TS487
Fig. 63: THD + N vs Output Power
10 RL = 16 F = 20kHz Av = -2 Cb = 1F BW < 125kHz 1 Tamb = 25C
Fig. 64: THD + N vs Output Power
10 RL = 32 F = 20kHz Av = -2 Cb = 1F BW < 125kHz 1 Tamb = 25C
Vcc=2V
THD + N (%)
Vcc=2V
Vcc=2.5V
0.1
Vcc=3.3V Vcc=5V Vcc=2.5V Vcc=3.3V Vcc=5V
1
10 Output Power (mW)
100
THD + N (%)
0.1
1
10 Output Power (mW)
100
Fig. 65: THD + N vs Output Power
10
Vcc=2V
Fig. 66: THD + N vs Frequency
1
Vcc=2.5V
RL=16 Av=-2 Cb = 1F Bw < 125kHz Tamb = 25C THD + N (%) 0.1
THD + N (%)
Vcc=2V, Po=7.5mW
0.1
0.01 RL = 600, F = 20kHz Av = -2, Cb = 1F BW < 125kHz, Tamb = 25C 1E-3 0.01
Vcc=3.3V Vcc=5V Vcc=5V, Po=85mW
0.01 1 20
0.1 Output Voltage (Vrms)
100
1000 Frequency (Hz)
10000 20k
Fig. 67: THD + N vs Frequency
Fig. 68: THD + N vs Frequency
THD + N (%)
THD + N (%)
RL=32 Av=-2 Cb = 1F Bw < 125kHz 0.1 Tamb=25C
RL=600 Av=-2 Cb = 1F 0.1 Bw < 125kHz Tamb = 25C
Vcc=5V, Vo=1.3Vrms Vcc=2V, Vo=0.5Vrms
Vcc=2V, Po=6mW
0.01
0.01
Vcc=5V, Po=55mW
1E-3 20 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k
20/31
TS486-TS487
Fig. 69: Crosstalk vs Frequency Fig. 70: Crosstalk vs Frequency
80
ChB to ChA
80
ChB to ChA
Crosstalk (dB)
ChA to ChB 40 RL=16 Vcc=5V Pout=85mW Av=-2 Cb = 1F Bw < 125kHz Tamb=25C 100 1000 Frequency (Hz) 10000 20k
Crosstalk (dB)
60
60
ChA to ChB RL=16 Vcc=2V Pout=7.5mW Av=-2 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
40
20
20
0 20
0
Fig. 71: Crosstalk vs Frequency
Fig. 72: Crosstalk vs Frequency
80
80 60 Crosstalk (dB) 60 ChA to ChB ChB to ChA 40 RL=32 Vcc=5V Pout=55mW Av=-2 Cb = 1F Bw < 125kHz Tamb=25C 100 1000 Frequency (Hz) 10000 20k Crosstalk (dB)
ChA to ChB ChB to ChA
40
20
20
RL=32 Vcc=2V Pout=6mW Av=-2 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
0 20
0
Fig. 73: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
100 98 Signal to Noise Ratio (dB) 96 94 92 90 88 86 84 82 2.0 2.5 3.0 3.5 4.0 4.5 5.0 RL=16 RL=32 Av = -2 Cb = 1F THD+N < 0.4% Tamb = 25C RL=600
Fig. 74: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
104 Av = -2 Cb = 1F 100 THD+N < 0.4% Tamb = 25C 98 102 Signal to Noise Ratio (dB) 96 94 92 90 88 86 84 82 2.0 2.5 3.0 3.5 4.0 4.5 5.0 RL=16 RL=32 RL=600
Power Supply Voltage (V)
Power Supply Voltage (V)
21/31
TS486-TS487
Fig. 75: PSRR vs Power Supply Voltage Fig. 76: PSRR vs Bypass Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V -70 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = -2 Input = grounded Cb = 1F RL >= 16 Tamb = 25C Vcc = 2V
0 -10 -20 PSRR (dB) -30 -40 Cb = 1F -50 -60 Cb = 4.7F -70 100 Cb = 2.2F 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = -2 Input = grounded Vcc = 5V RL >= 16 Tamb = 25C
Fig. 77: PSRR vs Input Capacitor
Fig. 78: PSRR vs Output Capacitor
0 -10 -20 PSRR (dB) Cin = 1F, 220nF -30 -40 -50 -60 -70 Cin = 100nF Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1F, Rin = 20k RL >= 16 Tamb = 25C
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 Cout = 220F Cout = 470F Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1F, RL = 16 RL >= 16 Tamb = 25C
100
1000 10000 Frequency (Hz)
100000
100
1000 10000 Frequency (Hz)
100000
Fig. 79: PSRR vs Output Capacitor
Fig. 80: THD + N vs Output Power
10
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 100 1000 10000 Frequency (Hz) 100000 Cout = 100F Cout = 470F Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1F, RL = 32 RL >= 16 Tamb = 25C
THD + N (%)
RL = 16 F = 20Hz Av = -4 Cb = 1F 1 BW < 22kHz Tamb = 25C
Vcc=2V
Vcc=2.5V
0.1
Vcc=3.3V
Vcc=5V
0.01
1
10 Output Power (mW)
100
22/31
TS486-TS487
Fig. 81: THD + N vs Output Power
10 RL = 32 F = 20Hz Av = -4 Cb = 1F 1 BW < 22kHz Tamb = 25C
Vcc=2V
Fig. 82: THD + N vs Output Power
10 RL = 600, F = 20Hz Av = -4, Cb = 1F BW < 22kHz Tamb = 25C
Vcc=2V Vcc=2.5V Vcc=3.3V
1 THD + N (%)
THD + N (%)
0.1
Vcc=5V
0.1
Vcc=2.5V
0.01
0.01 1
Vcc=3.3V
Vcc=5V
10 Output Power (mW)
100
1E-3 0.01
0.1 Output Voltage (Vrms)
1
Fig. 83: THD + N vs Output Power
10 RL = 16 F = 1kHz Av = -4 Cb = 1F 1 BW < 125kHz Tamb = 25C
Fig. 84: THD + N vs Output Power
10 RL = 32 F = 1kHz Av = -4 Cb = 1F 1 BW < 125kHz Tamb = 25C
Vcc=2V
THD + N (%)
Vcc=2V
Vcc=2.5V
THD + N (%)
0.1
0.1
Vcc=2.5V
Vcc=3.3V
Vcc=5V
Vcc=3.3V
Vcc=5V
0.01
1
10 Output Power (mW)
100
0.01
1
10 Output Power (mW)
100
Fig. 85: THD + N vs Output Power
10
Vcc=2V
Fig. 86: THD + N vs Output Power
10 RL = 16 F = 20kHz Av = -4 Cb = 1F BW < 125kHz Tamb = 25C 1
Vcc=2.5V
1 THD + N (%) THD + N (%)
Vcc=2.5V Vcc=3.3V
Vcc=2V
0.1
0.01 RL = 600, F = 1kHz Av = -4, Cb = 1F BW < 125kHz, Tamb = 25C 1E-3 0.01
Vcc=5V Vcc=3.3V Vcc=5V
0.1 Output Voltage (Vrms)
1
0.1
1
10 Output Power (mW)
100
23/31
TS486-TS487
Fig. 87: THD + N vs Output Power
10 RL = 32 F = 20kHz Av = -4 Cb = 1F BW < 125kHz Tamb = 25C 1
Vcc=2V Vcc=2.5V
Fig. 88: THD + N vs Output Power
10
Vcc=2V
1
Vcc=2.5V
THD + N (%)
THD + N (%)
0.1
0.01 RL = 600, F = 20kHz Av = -4, Cb = 1F BW < 125kHz, Tamb = 25C 100 1E-3 0.01
Vcc=3.3V Vcc=5V
0.1 1
Vcc=3.3V
Vcc=5V
10 Output Power (mW)
0.1 Output Voltage (Vrms)
1
Fig. 89: THD + N vs Frequency
Fig. 90: THD + N vs Frequency
THD + N (%)
THD + N (%)
RL=16 Av=-4 Cb = 1F Bw < 125kHz Tamb = 25C
Vcc=2V, Po=7.5mW
RL=32 Av=-4 Cb = 1F Bw < 125kHz Tamb=25C 0.1
Vcc=2V, Po=6mW
0.1
Vcc=5V, Po=85mW
Vcc=5V, Po=55mW
0.01 20 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k
Fig. 91: THD + N vs Frequency
Fig. 92: Crosstalk vs Frequency
80 ChB to ChA
THD + N (%)
RL=600 Av=-4 Cb = 1F 0.1 Bw < 125kHz Tamb = 25C Crosstalk (dB)
Vcc=2V, Vo=0.5Vrms
60 ChA to ChB 40 RL=16 Vcc=5V Pout=85mW Av=-4 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
0.01
20
Vcc=5V, Vo=1.3Vrms
1E-3 20 100 1000 Frequency (Hz) 10000 20k
0
24/31
TS486-TS487
Fig. 93: Crosstalk vs Frequency
80 ChB to ChA 80 60 Crosstalk (dB) Crosstalk (dB) ChA to ChB 40 RL=16 Vcc=2V Pout=7.5mW Av=-4 Cb = 1F Bw < 125kHz Tamb=25C 100 1000 Frequency (Hz) 10000 20k 60 ChA to ChB ChB to ChA 40 RL=32 Vcc=5V Pout=55mW Av=-4 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
Fig. 94: Crosstalk vs Frequency
20
20
0 20
0
Fig. 95: Crosstalk vs Frequency
Fig. 96: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
100 Av = -4 Cb = 1F 96 THD+N < 0.4% Tamb = 25C 94 98 92 90 88 86 84 82 80 2.0 2.5 RL=16 RL=32 RL=600
80
60 Crosstalk (dB)
ChA to ChB ChB to ChA
40
20
RL=32 Vcc=2V Pout=6mW Av=-4 Cb = 1F Bw < 125kHz Tamb=25C 100 1000 Frequency (Hz) 10000 20k
0 20
Signal to Noise Ratio (dB)
3.0
3.5
4.0
4.5
5.0
Power Supply Voltage (V)
Fig. 97: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
100 Av = -4 Cb = 1F 96 THD+N < 0.4% Tamb = 25C 94 98 Signal to Noise Ratio (dB) 92 90 88 86 84 82 80 2.0 2.5 RL=16 RL=32 RL=600
Fig. 98: PSRR vs Power Supply Voltage
0 -10 -20 -30 Vcc = 2V -40 -50 Vcc = 5V, 3.3V & 2.5V 3.0 3.5 4.0 4.5 5.0 -60 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = -4 Input = grounded Cb = 1F RL >= 16 Tamb = 25C
Power Supply Voltage (V)
PSRR (dB)
25/31
TS486-TS487
Fig. 99: PSRR vs Input Capacitor Fig. 100: PSRR vs Bypass Capacitor
0 -10 -20 -30 -40 Cin = 1F, 220nF Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1F, Rin = 20k RL >= 16 Tamb = 25C
0 -10 -20 PSRR (dB) -30 -40 -50 Vripple = 200mVpp Av = -4 Input = grounded Vcc = 5V RL >= 16 Tamb = 25C
PSRR (dB)
Cb = 1F
-50 Cin = 100nF -60 100 1000 10000 Frequency (Hz) 100000 -60 Cb = 4.7F 100 Cb = 2.2F 1000 10000 Frequency (Hz) 100000
Fig. 101: PSRR vs Output Capacitor
Fig. 102: PSRR vs Output Capacitor
0
0 -10 -20 -30 -40 -50 Cout = 220F -60 Cout = 470F Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1F, RL = 16 RL >= 16 Tamb = 25C
-10 -20 -30 -40 -50 Cout = 100F -60 100000 100 Cout = 470F
PSRR (dB)
PSRR (dB)
Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1F, RL = 32 RL >= 16 Tamb = 25C
100
1000 10000 Frequency (Hz)
1000 10000 Frequency (Hz)
100000
26/31
TS486-TS487
APPLICATION NOTE:
Stdby level threshold=0.9V Stdby ctrl Right In Rfeed1 20k Cin1 20k 2 5 3 Stdby Vcc
+
330nF Rin1 Cb
1
+ TS486=Stdby TS487=Stdby + 7 Cout1 Cout2 1k ZL=32Oh ms
+
330nF 1F Rin2 20k 6
BIAS
+
Left In Cin2
GND 4 20k Rfeed2 220F 1k
TS486/487 GENERAL DESCRIPTION TS486/487 is a family of dual audio amplifiers able to drive 16 or 32 headsets. Working in the 2V to 5.5V supply voltage range, they deliver 100mW at 5V and 12mW at 2V in a 16 load. An internal output current limitation, offers protection against short-circuits at the output over a limited time period. Fixed gain versions of the TS486 and TS487 including the feedback resistor and the input resistors are also proposed to reduce the number of external parts. The TS486 and TS487 exhibit a low quiescent current of typically 1.8mA, allowing usage in portable applications. The standby mode is selected using the SHUTDOWN input. For TS486 (respectively TS487), the device is in sleep mode when PIN 5 is connected at GND (resp. VCC). GAIN SETTING The gain of each inverter amplifier of the TS486 and TS487 is set by the resistors R IN and R FEED. GainLINEAR = -(RFEED/RIN)
GaindB = 20 Log(RFEED/RIN) Fixed gain versions TS486-n and TS487-n including RIN and RFEED are proposed to reduce external parts. LOW FREQUENCY ROLL-OFF WITH INPUT CAPACITORS The low roll-off frequency of the headphone amplifiers depends on the input capacitors CIN1 and CIN2 and the input resistors RIN1 and RIN2. The CIN capacitor in series with the input resistor RIN of the amplifier is equivalent to a first order high pass filter. Assuming that Fmin is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of CIN is: CIN > 1 / (2**Fmin*RIN ) The following curve gives directly the low frequency roll-off versus the input capacitor CIN
+
8 VCC -
220F
+
Cs
1F ZL=32Ohms
+
+
+
27/31
TS486-TS487
and for various values of the input resistor RIN .
1000 1000
Low roll-off frequency (Hz)
Rin = 10kW Rin = 1kW
frequency versus the output capacitor COUT in F and for the two typical 16 and 32 impedances:
100
Low roll-off frequency (Hz)
100
RL = 16W RL = 32W
10
Rin = 100kW
10
1 0.01
Rin = 20kWan d fix ed g ain ve rs ion s
0.1
Cin ( F)
1
10 1 10 100
C O UT ( F)
1000
10000
The input resistance of the fixed gain version is typically 20k. The following curve shows the limits of the roll off frequency depending on the min. and max. values of Rin:
100
(Hz)
DECOUPLING CAPACITOR C B The internal bias voltage at Vcc/2 is decoupled with the external capacitor CB. The TS486 and TS487 have a specified Power Supply Rejection Ratio parameter with CB = 1F. A higher value of CB improves the PSRR, for example, a 4.7F improves the PSRR by 15dB at 200Hz (please, refer to fig. 76 "PSRR vs Bypass Capacitor"). POP PRECAUTIONS
RinMIN=16k RinTYP =20k 10
-3dB Cut Off Frequency
RinMAX=24k
1 0.1
1 Inp ut Ca p a c ito r Cin (m F)
LOW FREQUENCY ROLL OFF WITH OUTPUT CAPACITORS The DC voltage on the outputs of the TS486/487 is blocked by the output capacitors COUT1 and COUT2 . Each output capacitor COUT in series with the resistance of the load RL is equivalent to a first order high pass filter. Assuming that Fmin is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of COUT is: COUT > 1 / (2**Fmin*RL) The following curve gives directly the low roll-off
28/31
Generally headphones are connected using a connector as a jack. To prevent a pop in the headphones when plugged in the jack, a resistor should be connected in parallel with each headphone output. This allows the capacitors Cout to be charged even when no headphone is plugged. A resistor of 1 k is high enough to be a negligible load, and low enough to charge the capacitors Cout in less than one second.
TS486-TS487
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO)
L C a3 c1
a2
A
s e3 E
D M
8
5 F
1
4
Millimeters Dim. Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S 0.1 0.65 0.35 0.19 0.25 4.8 5.8 1.27 3.81 3.8 0.4 4.0 1.27 0.6 8 (max.) 0.150 0.016 Typ. Max. 1.75 0.25 1.65 0.85 0.48 0.25 0.5 45 (typ.) 5.0 6.2 0.189 0.228 Min. 0.004 0.026 0.014 0.007 0.010
a1
b
Inches Typ. Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.197 0.244 0.050 0.150 0.157 0.050 0.024
b1
29/31
TS486-TS487
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (miniSO)
k
0,25 mm .010 inch GAGE PLANE
c
L E1
SEA TING PLANE
A A2 A1
5
C
E
4
D
L1 b
C
8 1
Dim. Min. A A1 A2 b c D E E1 e L L1 k aaa 0.050 0.780 0.250 0.130 2.900 4.750 2.900 0.400 0d
Millimeters Typ. 0.100 0.860 0.330 0.180 3.000 4.900 3.000 0.650 0.550 0.950 3d Max. 1.100 0.150 0.940 0.400 0.230 3.100 5.050 3.100 0.700 6d 0.100 Min. 0.002 0.031 0.010 0.005 0.114 0.187 0.114 0.016 0d
ccc
PIN 1 IDENTIFICA TION
e
Inches Typ. 0.004 0.034 0.013 0.007 0.118 0.193 0.118 0.026 0.022 0.037 3d Max. 0.043 0.006 0.037 0.016 0.009 0.122 0.199 0.122 0.028 6d 0.004
30/31
TS486-TS487
PACKAGE MECHANICAL DATA 8 CONNECTIONS - Dual Micro Leadframe Package (QFN)
Millimeters Dimensions Min. A A1 A2 A3 b D D2 E E2 e L ddd 0.80 Typ. 0.90 0.02 0.70 0.20 0.23 3.00 2.35 3.00 1.35 0.50 0.55 Max. 1.00 0.05
0.18 2.20 1.20 0.45
0.30 2.45 1.45 0.65 0.08
Information furni shed is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringe ment of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publ ication supersedes and replaces all informatio n previously suppl ied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c) 2002 STMicroelectronics - Printed in Italy - All Right s Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Swit zerland - United Kingdom - United States http://ww w.st.com
31/31


▲Up To Search▲   

 
Price & Availability of TS487-1IQT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X